

Prof. Mohamed Ahmed Ebrafim

Benha University

Faculty of Engineering at Shoubra
Electrical Engineering Dept.

/ndustrial

Controls(17) By

Associate Prof. / Mohamed Ahmed Ebrahim Mohamed E-mail: mohamedahmed en@yahoo.com
mohamed.mohamed@feng.bu.edu.eg
Web site: http://bu.edu.eg/staff/mohamedmohamed033

$$
\begin{gathered}
\text { Lecture (4) } \\
17-03-2019
\end{gathered}
$$

Outline

- What is a PLC?
- Why Use PLCs?
- What are the Main Components of PLC?
- On Inputs and Outputs
- On the Control Program

Prof. Mohamed Ahmed E6rafim

What is a PLC?

PLC \square Programmable Logic Controller or programmable controller,
Or

المتحكم المنطقي القابل للبرمجة

So, what is it?

It is a Microprocessor-Based device used to control equipment in industrial applications

Prof. Mohamed Ahmed E6rahim

What is PLC

- PLC is a digital computer designed for multiple inputs and outputs arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact.
- A PLC is an example of a real time system.

Traditional concept of PLC

\square PLC performs relay equivalent functions.
\square PLC performs ON / OFF control.
\square Designed for industrial environment

Major components of a common PLC

PLC Components

- Provides the voltage needed to run the primary PLC components.
- is needed to convert the mains A.C voltage to low D.C. Voltage.

Prof. Mohamed Ahmed Ebrafim

2. I/O Modules

- Provides signal conversion \& isolation between the internal logic level signals inside the PLC and the fields high level signal.
- are where the processor receives information from external devices and communicates information to external devices.

3. Processor

- Provides intelligence to command and govern the activities of the entire PLC systems.
- is the unit containing the microprocessor.

- Used to enter the desired program that will determine the sequence of operation and control of process equipment or driven machine.
- is used to entered the required program into the memory of the processor.

5. Memory unit

- is where the program is stored that is to be used for control actions.

Prof. Mohamed Ahmed E6rafim

PLC operation sequence

1. Self test

- Testing of its own hardware and software for faults.

2. Input scan

- If there are no problems, PLC will copy all the inputs and copy their values into memory.

3. Logic solve/scan

- Using inputs, the ladder logic program is solved once and outputs are updated.
- While solving logic the output values are updated only in memory when ladder scan is done, the outputs will be updated using temporary values in memory.

Prof. Mohamed Ahmed Ebrahim

Programming languages of PLC

\square Most common languages encountered in PLC programming are:

1. Ladder logic.
2. Functional Block Diagram.
3. Sequential Function Chart.
4. Boolean Mnemonics.

Initroduction to Ledders Programming

Outiline

1. System Block Diagram
2. Basic Components and Their Symhols

3. Ladder Diagram Fundamentals

Prof. Mohamed Ahmed Ebrafim

PLC Block Diagram

Prof. Mohamed Ahmed E6rafim

Basic Components and Their Symbols

Mushroom Head Push Button Switches

Prof. Mohamed Ahmed E6rafim

Basic Components (Cont'd)

Limit Switches (LS)

Limit Switches

Limit switches can be mechanical or light activated switches

theamples: Anith switches on the reftigerator door that turnis ON the inside or to open doors in supermarkets

IIUJ• JVLUILUIILEU JIIIILEU LUUGILIIに

Basic Components (Cont d)

Dlectromagnetic devices

Relay or Contactor
Prof. Mohamed Ahmed Ebrahim

Basic Components (Cont'd)

Momentary Pushbutton Switches

Prof. Mohamed Ahmed E6rafim

Basic Components（Contd）

Relay Symbols

Basic Components (Cont'd)

When coil CR1 is energized, all the N/O CR1 contacts will be closed and all the N/C CR1 contacts will be open.

Likewise, if coil CR1 is de-energized, all the N/O CR1 contacts will be open and all the N/C CR1 contacts will be closed.

A contact labeled CR indicates that it is associated with a relay coil.

Dach relay will have a specific number associated with it. The range of numbers used will depend upon the number of relays in the system.

Example: AND Circuit

Prof. Mohamed Ahmed E6rahim

Example: AND Circuit (Cont'd)

Prof. Mohamed Ahmed Ebrahim

Example: AND/OR Circuit

Numbering Systems \mathcal{L}

 CodesProf. Mohamed Ahmed E6rafim

Analog and Digital Signal

Analog system

- The physical quantities or signals may vary continuously over a specified range.

Digital system

- The physical quantities or signals can assume only discrete values.
\square Greater accuracy

Digital signal
Dr: Mohamed Ahmed Ebrahim

Binary Digital Signal

\square An information variable represented by physical quantity.
\square For digital systems, the variable takes on discrete values.
\square Two level, or binary values are the most prevalent values.
\square Binary values are represented abstractly by:
\square Digits 0 and 1

Binary digital signal

Numbering Systems

\square A familiarity with number systems is quite useful when working with programmable controllers.
\square In general, programmable controllers use binary numbers in one form or another to represent various codes and quantities.

Cont.

\square The following statements apply to any number system:

1. Every number system has a base or radix.
2. Every system can be used for counting.
3. Every system can be used to represent quantities or codes.
4. Every system has a set of symbols.

Cont.

\square The number systems usually encountered while using programmable controllers are base 2, base 8, base10, and base 16. These systems are called binary, octal, decimal, and hexadecimal, respectively.

Numbering Systems		
System	Base	Digits
Binary	2	01
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789 A B C D E F

Decimal

Numbering

System

Prof. Mohamed Ahmed Ebrafim

1. Decimal Number System

\square How is a positive integer represented in decimal?
\square Let's analyze the decimal number 375:

$$
\begin{aligned}
375 & =(3 \times 100)+(7 \times 10)+(5 \times 1) \\
& =\left(3 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(5 \times 10^{0}\right)
\end{aligned}
$$

Decimal System Principles

\square A decimal number is a sequence of digits
\square Decimal digits must be in the set:

$$
\{0,1,2,3,4,5,6,7,8,9\}
$$

(Base 10)

- Each digit contributes to the value the number represents
\square The value contributed by a digit equals the product of the digit times the weight of the position of the digit in the number

Cont.

\square Position weights are powers of 10
\square The weight of the rightmost (least significant digit) is 10^{0} (i.e. 1)

- The weight of any position is 10^{x}, where x is the number of positions to the right of the least significant digit

\square In a computer, information is stored using digital signals that translate to binary numbers
\square A single binary digit (0 or 1) is called a Bit.
\square A single bit can represent two possible states, on (1) or off (0)
- Combinations of bits are used to store values.

Data Representation

\square Data representation means encoding data into bits.
\square Typically, multiple bits are used to represent the 'code' of each value being represented
\square Values being represented may be characters, numbers, images, audio signals, and video signals.
\square Although a different scheme is used to encode each type of data, in the end the code is always a string of zeros and ones.

Decimal to Binary

\square So in a computer, the only possible digits we can use to encode data are $\{0,1\}$
\square The numbering system that uses this set of digits is the base 2 system (also called the Binary Numbering System)
\square We can apply all the principles of the base 10 system to the base 2 system

Prof. Mohamed Ahmed E6rahim

Binary

Numbering

System

Prof. Mohamed Ahmed Ebrafim

2. Binary Numbering System

How is a positive integer represented in binary?
\square Let's analyze the binary number 110:

$$
\begin{aligned}
110 & =\left(\mathbf{1} \times 2^{2}\right)+\left(\mathbf{1} \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
& =(1 \times 4)+(1 \times 2)+(0 \times 1)
\end{aligned}
$$

- So a count of SIX is represented in binary as 110 Prof. Mofamed Ahmed Ebrafim

Binary to Decimal Conversion

- To convert a base 2 (binary) number to base 10 (decimal):
- Add all the values (positional weights) where a one digit occurs
- Positions where a zero digit occurs do NOT add to the value, and can be ignored

Cont.

Example (1): Convert binary 100101 to decimal (written 1000101_{2}) =

Prof. Mohamed Ahmed E6rafim

Cont.

Example (2): 10111_{2}

positional powers of 2: $\begin{array}{llllll}2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$ decimal positional value: $\begin{array}{llllll}16 & 8 & 4 & 2 & 1\end{array}$ binary number:

Cont.

Example (3): $\quad \mathbf{1 1 0 0 1 0}_{\mathbf{2}}$

positional powers of 2: $\begin{array}{lllllll}2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$ decimal positional value: $\begin{array}{lllllll}32 & 16 & 8 & 4 & 2 & 1\end{array}$ binary number:

Decimal to Binary Conversion

The Division Method

1) Start with your number (call it N) in base 10
2) Divide N by 2 and record the remainder
3) If (quotient $=0$) then stop
else make the quotient your new N , and go back to step 2
The remainders comprise your answer, starting with the last remainder as your first (leftmost) digit.

In other words, divide the decimal number by 2 until you reach zero, and then collect the remainders in reverse.

Cont.

Using the Division Method:
Divide decimal number by 2 until you reach zero, and then collect the remainders in reverse.
Example(1): $\quad \mathbf{2 2}_{10} \quad=\mathbf{1 0 1 1 0}_{\mathbf{2}}$

$2 \lcm{22}$	
$2 \lcm{11}$	Rem:
$2 \lcm{5}$	0
$2 \lcm{2}$	1
$2 \lcm{1}$	0
0	1

Cont.

Using the Division Method
Example 2: $\quad 56_{10}=111000_{2}$
$2 \lcm{56}$ Rem:
$\left.\begin{array}{ll}2 \lcm{28} & 0 \\ 2 \lcm{14} & 0 \\ 2 \lcm{7} & 0 \\ 2 \lcm{3} & 1 \\ 2 \lcm{1} & 1 \\ 0 & 1\end{array} \right\rvert\,$
Prof. Mohamed Ahmed Ebrahim

Cont.

The Subtraction Method

- Subtract out largest power of 2 possible (without going below zero), repeating until you reach 0.
- Place a 1 in each position where you COULD subtract the value
- Place a 0 in each position that you could NOT subtract out the value without going below zero.

Cont.

Example 1:

 211021
$\begin{array}{lllllll}2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$ $\begin{array}{lllllll}64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$

$$
\begin{array}{r}
-16 \\
-\quad 4 \\
-\quad 4 \\
\hline 1 \\
-1
\end{array}
$$

Cont.

Example 2:

$$
\begin{array}{rc|cccccc}
56 & 2^{6} \mid 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
-\quad \mathbf{3 2} & 64 \mid 32 & 16 & 8 & 4 & 2 & 1 \\
24 & \mid 1 & 1 & 1 & 0 & 0 & 0 \\
-\mathbf{1 6} & & & & & & \\
\hline 8 & & & \\
-\mathbf{8} & \text { Answer: } 56_{10}=111000_{2}
\end{array}
$$

Prof. Mofamed Ahmed Ebrafim

Octal

Numbering

System

Prof. Mohamed Ahmed E6rafim

3. Octal Numbering System

\square Base: 8
\square Digits: 0, 1, 2, 3, 4, 5, 6, 7
> Octal number: $\quad 357_{8}$

$$
=\left(3 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right)
$$

To convert to base 10, beginning with the rightmost digit, multiply each nth digit by $8^{(n-1)}$, and add all of the results together.

Octal to Decimal Conversion

- Example 1: 357_{8}
positional powers of 8: $\quad \begin{array}{llll}8^{2} & 8^{1} & 8^{0}\end{array}$ decimal positional value: $\quad \begin{array}{llll}64 & 8 & 1\end{array}$

Octal number: 35

$$
\begin{aligned}
& (3 \times 64)+(5 \times 8)+(7 \times 1) \\
= & 192+40+7=239_{10}
\end{aligned}
$$

Cont.

" Example 2: 1246_{8}
positional powers of 8: $\begin{array}{llllll} & 8^{3} & 8^{2} & 8^{1} & 8^{0}\end{array}$ decimal positional value: $\begin{array}{lllll}512 & 64 & 8 & 1\end{array}$

Octal number: 1246

$$
\begin{aligned}
& (1 \times 512)+(2 \times 64)+(4 \times 8)+(6 \times 1) \\
& =512+128+32+6=678_{10}
\end{aligned}
$$

Decimal to Octal Conversion

The Division Method

1) Start with your number (call it N) in base 10
2) Divide N by 8 and record the remainder
3) If (quotient $=0$) then stop else make the quotient your new N , and go back to step 2
The remainders comprise your answer, starting with the last remainder as your first (leftmost) digit.

In other words, divide the decimal number by 8 until you reach zero, and then collect the remainders in reverse.

Cont.

Using the Division Method:

Example 1:

$214_{10}=326_{8}$
$8 \lcm{214}$ Rem:
$8 \lcm{26}$
$8 \lcm{3}$
6
0
3

Prof. Mohamed Ahmed Ebrafim

Cont.

Example 2:

$4330_{10}=10352_{8}$

Cont.

The Subtraction Method

- Subtract out multiples of the largest power of 8 possible (without going below zero) each time until you reach 0 .
- Place the multiple value in each position where you COULD subtract the value.
- Place a 0 in each position that you could NOT subtract out the value without going below zero.

Cont.

Example 1: $\quad 315_{10}$

315
$-256(4 \times 64)$
59

- $56(7 \times 8)$ 3
$-\quad 3(3 \times 1)$
$\begin{array}{lll}8^{2} & 8^{1} & 8^{0}\end{array}$
6481

473

Answer: $\mathbf{3 1 5}_{\mathbf{1 0}}=\mathbf{4 7 3}_{\mathbf{8}}$
Prof. Mofamed Ahmed Ebrafim

Cont.

Example 2: $\quad 2018_{10}$

$$
\begin{aligned}
& 2018 \\
& -\frac{1536}{482}(3 \times 512) \\
& -448 \\
& \hline 34 \\
& -\quad 32 \\
& -\frac{2}{2}(4 \times 84) \\
& -\quad 2 \\
& \hline
\end{aligned}(2 \times 1),
$$

Hexadecimal (Hex)

Numbering

System

Prof. Mohamed Ahmed E6rafim

4. Hexadecimal (Hex)Numbering System

\square Base: 16
\square Digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
> Hexadecimal number: $\quad \mathrm{IF4}_{16}$

$$
=\left(1 \times 16^{2}\right)+\left(F \times 16^{1}\right)+\left(4 \times 16^{0}\right)
$$

HEX Extra Digits

Decimal Value	Hexadecimal Digit
10	A
11	B
12	C
13	D
14	E
15	F

Hex to Decimal Conversion

\square To convert to base 10:
A. Begin with the rightmost digit
B. Multiply each nth digit by $16^{(n-1)}$
C. Add all of the results together

Cont.

\square Example 1:
1F4 ${ }_{16}$
positional powers of 16: $\begin{array}{lllll}16^{3} & 16^{2} & 16^{1} & 16^{0}\end{array}$ decimal positional value: $\begin{array}{lllll}4096 & 256 & 16 & 1\end{array}$

Hexadecimal number: 1 F 4

$$
\begin{aligned}
& (1 \times 256)+(F \times 16)+(4 \times 1) \\
& =(1 \times 256)+(15 \times 16)+(4 \times 1) \\
\text { Answer }= & 256+240+4=500_{10}
\end{aligned}
$$

Cont.

- Example 2:
$25 \mathrm{AC}_{16}$
positional powers of 16: $\begin{array}{lllll}16^{3} & 16^{2} & 16^{1} & 16^{0}\end{array}$ decimal positional value: $\begin{array}{llll}4096 & 256 & 16 & 1\end{array}$

Hexadecimal number: 2 5 A C

$$
\begin{aligned}
& \quad(2 \times 4096)+(5 \times 256)+(\mathrm{A} \times 16)+(\mathrm{C} \times 1) \\
& =(2 \times 4096)+(5 \times 256)+(10 \times 16)+(12 \times 1) \\
& \text { Answer }=8192+1280+160+12=9644_{10}
\end{aligned}
$$

Decimal to Hex Conversion

The Division Method

1) Start with your number (call it N) in base 10
2) Divide N by 16 and record the remainder
3) If (quotient $=0$) then stop else make the quotient your new N , and go back to step 2
The remainders comprise your answer, starting with the last remainder as your first (leftmost) digit.

In other words, divide the decimal number by 16 until you reach zero, and then collect the remainders in reverse.

Cont.

Using The Division Method:

Example 1:

126 ${ }_{10}=$
16) 126 Rem:

Answer= 7E $\mathbf{1 6}_{16}$

Cont.

Example 2: $\quad \mathbf{6 0 3}_{\mathbf{1 0}}=$

Answer= 25B ${ }_{16}$

Cont.

The Subtraction Method

- Subtract out multiples of the largest power of 16 possible (without going below zero) each time until you reach 0.
- Place the multiple value in each position where you COULD to subtract the value.
- Place a 0 in each position that you could NOT subtract out the value without going below zero.

Cont.

Example 1: $\mathbf{8 1 0}_{10}$

> 810
> $-768(3 \times 256)$
> $16^{2} \quad 16^{1} \quad 16^{0}$
> 256161
> 42
> $-\quad 32(2 \times 16)$
> 10
> $-\quad 10(10 \times 1)$
> 0
> Answer: $\mathbf{8 1 0}_{\mathbf{1 0}}=\mathbf{3 2} \mathbf{A}_{\mathbf{1 6}}$

Prof. Mohamed Ahmed Ebrahim

Cont.

Example 2: $\mathbf{1 5 6}_{10}$

$$
\begin{array}{r}
156 \\
-144(9 \times 16) \\
\hline 12 \\
-\quad 12(12 \times 1) \\
\hline 0
\end{array}
$$

$16^{2} \quad 16^{1} \quad 16^{0}$
$\begin{array}{ll}256 & 16 \quad 1\end{array}$ 9 C

Answer: $\mathbf{1 5 6}_{\mathbf{1 0}}=\mathbf{9 C} \mathbf{1 6}_{\mathbf{1 6}}$
Prof. Mohamed Ahmed E6rafim

Numbering Conversion

Binary to Octal Conversion

- The maximum value represented in 3 bit is: $2^{3}-1=7$
- So using 3 bits we can represent values from 0 to 7 which are the digits of the Octal numbering system.
- Thus, three binary digits can be converted to one octal digit.

Cont.

Three-bit Group	Decimal Digit	Octal Digit
000	0	0
001	1	1
010	2	2
011	3	3
100	4	4
101	5	5
110	6	6
111	7	7

Cont.

Ex: Convert 10100110_{2} to octal
Starting at the right end, split into groups of 3 :

$$
\begin{array}{rl}
10100 & 110 \rightarrow \\
110 & =6 \\
100 & =4 \\
010 & =2 \quad \text { (pad empty digits with } 0)
\end{array}
$$

$$
\text { Answer: } 10100110_{2}=246_{8}
$$

Octal to Binary Conversion

Ex: Convert 742_{8} to binary
Convert each octal digit to 3 bits:

$$
\begin{aligned}
& 7= \\
& 4=111 \\
& 2
\end{aligned}=100
$$

Binary to Hex Conversion

- The maximum value represented in 4 bit is:

$$
24-1=15
$$

- So using 4 bits we can represent values from 0 to 15 which are the digits of the Hexadecimal numbering system.
- Thus, four binary digits can be converted to one hexadecimal digit.

Four Bit Group	Decimal Digit	HEX Digit
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	A
1011	11	B
1100	12	C
1101	13	D
1110	14	E
1111	15	F

Cont.

Ex: Convert 110100110_{2} to hex
Starting at the right end, split into groups of 4:

$$
11010 \begin{aligned}
0110 & \rightarrow \\
0110 & =6 \\
1010 & =A \\
0001 & =1(\text { pad empty digits with } 0)
\end{aligned}
$$

Answer: $110100110_{2}=1 \mathrm{~A} 6_{16}$

Hex to Binary Conversion

Ex: Convert 3D9 ${ }_{16}$ to binary
Convert each hex digit to 4 bits:

$$
\begin{aligned}
& 3=0011 \\
& D=1101 \\
& 9=1001
\end{aligned}
$$

$001111011001 \rightarrow$

Answer: 3D9 $1_{16}=1111011001_{2}$ (can remove leading zeros)

Octal to Hex Conversion

- To convert between the Octal and Hexadecimal numbering systems:
- Convert from one system to binary first
- Then convert from binary to the new numbering system

Cont.

Ex: Convert 752_{8} to hex

1. First convert the octal to binary:

$$
111101010_{2}
$$

re-group by 4 bits
$000111101010 \quad$ (add leading zeros)
2. Then convert the binary to hex:

$$
\begin{gathered}
1 \quad E \quad \begin{array}{c}
\text { E }
\end{array} \\
\text { So } 752_{8}=1 E A_{16}
\end{gathered}
$$

Hex to Octal Conversion

Ex: Convert E8A ${ }_{16}$ to octal

1. First convert the hex to binary:
111010001010_{2}

111010001010 and re-group by 3 bits (starting on the right)
2. Then convert the binary to octal:

$$
\begin{array}{llll}
7 & 2 & 1 & 2
\end{array}
$$

So $E 8 A_{16}=7212_{8}$

Activity

\square Ex: Convert the following numbers:

1. 1010111101_{2} to Hex
2. $82 \mathrm{~F}_{16}$ to Binary

Answers

> 1. $\begin{aligned} & 1010111101_{2} \\ & 1101\end{aligned} \begin{aligned} & \rightarrow 101011 \\ &= 2 \mathrm{BD}_{16}\end{aligned}$ 2. $82 \mathrm{~F}_{16}=010000101111$

